Ozone
0
200
60
90
0
50
150
0
15
0
100
250
Solar.R
Wind
5
10
20
60
80
Temp
Month
5
6
7
8
9
0
10
20
30
0
100
5
15
5
7
9
Day
Regression model
# Fit a linear regression model with
Ozone
as the response variable and
Solar.R ,
Wind , and
Temp
fit <-
lm
(Ozone
~
Solar.R
+
Wind
+
Temp,
data =
airquality
)
summary
(fit)
##
## Call:
## lm(formula = Ozone ~ Solar.R + Wind + Temp, data = airquality)
##
## Residuals:
##
Min
1Q
Median
3Q
Max
## -40.485 -14.219
-3.551
10.097
95.619
##
## Coefficients:
##
Estimate Std. Error t value Pr(>|t|)
## (Intercept) -64.34208
23.05472
-2.791
0.00623 **
## Solar.R
0.05982
0.02319
2.580
0.01124 *
## Wind
-3.33359
0.65441
-5.094 1.52e-06 ***
## Temp
1.65209
0.25353
6.516 2.42e-09 ***
## ---
## Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 21.18 on 107 degrees of freedom
##
(42 observations deleted due to missingness)
## Multiple R-squared:
0.6059, Adjusted R-squared:
0.5948
2