Prepared by Ryuichi Man
1
MATH115 Calculus I (Section 129)
Fall 2023 Section 3.1 Worksheet
Problem 1
:
A portion of the graph of the function
(
)
m x
, which
is defined on
(
)
,
−
, is shown on the right.
Note that
(
)
m x
is linear on the intervals
(
)
4, 1
−
−
,
(
)
1,2
−
and
(
)
2,6
.
Find the
exact
values, or write
DNE
if the value does
not exist.
a.
Let
(
)
(
)
3
2
P x
m x
x
=
−
. Find
(
)
'
3
P
−
.
b.
Let
( )
( )
3
2
Q b
b
m b
=
+
. Find
( )
" 5
Q
.
c.
Let
( )
( )
6
R t
t
t
m t
=
+
−
. Find
( )
' 2
R
.
d.
Let
(
)
(
)
2
5
3
u
u
S u
m u
u
−
=
−
. Find
( )
' 1
S
.
Solution
:
a.
( )
( )
2
3
'
2
'
P
x
m
x
x
= −
−
➔
(
)
(
)
(
)
2
3
1
13
'
3
2
'
3
2 2
3
3
3
P
m
−
= −
−
−
= −
−
= −
−
b.
( )
( )
2
'
3
2
'
Q
b
b
m
b
=
+
➔
( )
( )
"
6
2
"
Q
b
b
m
b
=
+
➔
( )
( )
( )
( )
" 5
6 5
2
" 5
30
2 0
30
Q
m
=
+
=
+
=
[Since
(
)
m x
is linear on
(
)
2,6
, its second derivative is always zero on
(
)
2,6
.]
c.
( )
( )
1
1
'
6
'
2
R
t
t
m
t
t
−
=
+
−
Since
(
)
m x
is
not
differentiable at
2
x
=
, we conclude that
( )
' 2
R
does not exist (
DNE
).
d.
(
)
(
)
3
1
2
5
3
S u
u
u
m u
−
−
=
−
−
➔
(
)
(
)
5
2
2
3
'
5
3
'
2
S
u
u
u
m
u
−
−
−
=
+
−
➔
(
)
( )
( )
( )
5
2
2
3
3
2
3
'
1
5 1
3
' 1
5
3
2
2
3
2
S
u
m
−
−
−
=
+
−
= −
+
−
=