6.4 Parallel and Perpendicular Vectors
Dot Product
: If
±
²
±
²
1
2
1
2
,
and
,
,
v
v
v
w
w
w
&
)&
then the dot product is
1
1
2
2
v w
v w
v w
³
& )&
±
.
Ex. Find the dot product for
±
²
±
²
3,4
and
7,
2 .
v
w
´
´
´
&
)&
______________________________________________________________________________
Angle between two vectors:
To find the angle between two vectors
and
,
v
w
&
)&
cos
w v
w
v
T
)& &
±
)&
&
Ex. Find the measure of the angle between the vectors
±
²
±
²
9, 5
and
7, 1
w
v
´
)&
&
.
______________________________________________________________________________
If
cos
0, then
90
T
T
q
so two vectors are perpendicular if their dot product is 0.
Two vectors are parallel if one is a multiple of the other.
Vectors are said to be
orthogonal
if they are perpendicular to each other.
Ex. Determine whether the given vectors are parallel, perpendicular, or neither.
(a)
±
² ±
²
8,
6 ,
4, 3
´
´
(b)
±
² ±
²
8,
6 ,
3,
4
´
´
´
(c)
±
² ±
²
8,
6 ,
3, 4
´
´
______________________________________________________________________________
Ex. Given the vectors
±
²
±
²
,3
and
2, 5
k
,
(a) Determine the value of
k
so that the given vectors will be parallel.
(b) Determine the value of
k
so that the given vectors will be perpendicular.
J
W
371
7
4
2
21
8
D
J W
9
7
5
i
63
5
58
F
F
F
y
xp
p
É
É
W
11TH
ft
Fo
cos
0
0.796691
I
o
cost
0.796691
cost
0
142.8150
4
900
cos
1900
0
IjEw
If
Ftw
parallel
p
If
Yay
then
J
W
O
T
parallel
0
900
8
3
C
6 C
4
I
Em
yes
I
a
o.o
notpa.ae
I
not
perpendicular
Neited
Iz
3
K
E
Same
scalefactor
K
z
3
5
0
2K
15
K
I
7.5