tog,
X
x
2
X=gfi'x
X=4
W
a0
0
Derivatives
of
the
Logarithmic
Function.
T
and
in
particular,
(Inz)
=
51;-
,{(77'-
x=dd
x'=(a
'f"?')@
1=
b4
(49}/')':7({%9/:
!
'[i'fi
X
(log,z)
=
Xa
m
5
.
find
f'(z).
Homework:
If
f(z)
=
~lh
,]l(x)
Xt¥
W)
X
'L(X'5)'/X+?)'VY'5
g—_—_g—___
VXx-5
(W?L
Jx-5"
(x+y)2
"(x—5)()rf¥/
5.2
Logarithmic
Differentiation.
E%(Mny)
4
(s1
X)
Example:
Let
.
N
(z—1)°(z
—
)"
fo)
=
G
oy
+
5
£
6
Calculate
f'(z).
SOLUTION.
/fi,,
'fi(x)
5%{(x
/)
+
flu(X-
6)
-2t
[X"o?.)
jfif
(Yz-ffl)f'fé)
%%{x/)
(3t
(x~
n)"
(m[x
5))
(2
bu(x
2))'
@fl((x+1x+
5))
72[(5)())
[Xsl
xllg
X4
y'+,,1x+
6}
7[;()
£(x):
{
}]
Steps
in
Logarithm
Differentiation
1.
Take
natural
logarithms
of
both
sides
of
the
equation
¥
=
f(z)
and
use
the
Laws
of
Lotafithms
to
simplify.
2.
Differentiate
implicitly
with
respect
to
z.
3.
Solve
the
resulting
equation
for
/.