Version 001 - Final Makeup - wolesensky - (KExams-F2019)
2
Use the graph to determine lim
x
→
4
f
(
x
).
1.
limit =
−
3
2.
limit =
−
1
3.
limit = 0
4.
limit =
−
2
5.
does not exist
003
10.0points
Let
F
be the function defined by
F
(
x
) =
x
2
−
4
|
x
−
2
|
.
Determine if the limit
lim
x
→
2
+
F
(
x
)
exists, and if it does, find its value.
1.
limit =
−
4
2.
limit = 2
3.
limit =
−
2
4.
limit = 4
5.
limit does not exist
004
10.0points
Determine if
lim
x
→
0
√
1
−
x
−
√
1 +
x
x
exists, and if it does, find its value.
1.
limit =
1
√
2
2.
limit =
−
2
3.
limit =
−
1
4.
limit =
−
1
√
2
5.
limit = 2
6.
limit does not exist
7.
limit = 1
005
10.0points
Determine where
f
(
x
) =
20
−
x,
x
≤ −
5,
x
2
,
−
5
< x <
2,
2 +
x,
x
≥
2.
is continuous, expressing your answer in in-
terval notation.
1.
(
−∞
,
−
5)
∪
(
−
5
,
2)
∪
(2
,
∞
)
2.
(
−∞
,
−
5)
∪
(
−
5
,
∞
)
3.
(
−∞
,
∞
)
4.
(
−∞
,
2)
∪
(2
,
∞
)
5.
(
−∞
,
−
5)
∪
(2
,
∞
)
006
10.0points
Determine if
lim
x
→ −∞
parenleftbigg
2
x
x
−
1
+
5
x
x
+ 1
parenrightbigg
exists, and if it does, find its value.
1.
limit = 7
2.
limit does not exist
3.
limit = 8
4.
limit = 6