%/éé
?
Math
110
Guided
Lecture
Sheet
Sect
3.4
A
-
i
flicients
Rational
Roots
Theorem:
If
the
polynomial
P(z)
=
anz™
+
ap_12"
1+
o+
@a1T
+
o
has
integer
coc
(
an
#
0
and
aq
#
0),
then
every
rational
zero
of
P
is
of
the
form
where
170
rcte
e
176)
oF
atl
POk
p
+-
P
@
Zes
oOF
Yhe
e
£
/0/(;
where
p
and
q
are
integers
and
'
Z)
UseS
Sy
4
HiC
S
1o
cvedluily
g
P
15
a
factor
of
the
constant
coefficient
ag
/Oo/j(]m'(///
o
caety
el
gr
Ll
COrSBAl
q
is
a
factor
of
the
leading
cocflicient
ay,.
S
.
N
/0
Fech
Koy
Ma
QN
Zeos
oy
1
Lo,
ohere,
h
M
=
S
e
;
(han
)
e
Feprean
Wrr
/S
200
A«
q
F
T
e
T
o
st
%
a=
(
p
3)/
)
sty
//C//(/
Z
*r
77
/2/0/5
wH
f
./
/
s
400
//"*
l'/
sy
,
3
/
/'
Lol
ra
/¢
T
SRl
P
isti
tential
1.
Find
the
real
zeros
of
the
following
polynomials
and
write
the
polynomial
if
factor_et.i
?OM-
Start
by
listing
the
pote:
rational
zeros.
Find
at
least
one
zero,
and
use
this
to
find
the
other
factors
by
division.
P(z)
=23
+222
-
132+
10
-
edl
ruclers
oF
107
1
i
|
pewtss
10
Lt
zJi%f/Maj
D
A
151
e
e
)
possels
Zeas
oF
#1¢
fcmf/d«,'
Aw//fl
loe
o]
M
+
I
>
-lo
o
~
(OCIJ:O
-
~7,%S,
/o
Véfl
o065
or
LX)
¢
/00()'
()2;/)
/—5
1=
Fa{,/r_/"z
afi/oa)
=7
0
-y
(xFl)=
P
XY
=
x-1)
cx
S+
Sx-foy
O
=x¢t/
_
PE)
=438
A K4S
)
2
gag
=g
(P6F)
T
CX1)
Cars,
Cx-2)
L/
/
3
0
-
p(l):o—>
x=1
18
ave
g
Fhc
12—47'&&
B
I
B
)
i
)
.
)
/
&
;a4
Ofpéxjcf(xlaab\a
sckse
plx)
|
(x).
=
(F1Y(x2
b
9
x+4)
=
|
I
kg
O
lgga)—,/x—ljéxm/w—z)
'
{
-7
=
-
i
,
055
16(¢
ratdmd
z.oe
=FhR=V)
2g
Hrr
A
(0
KFZ
29
xo
mL
c:1
4=t
"F2
29
4o
4
(e
=%
pilifa,ty
Pl
s
2
W
)
T,
Y
-2t
2,4