Math 3000
Fall 2020
Quiz 3
For each sequence, use the "
-
N
" language to prove the existing of the limit (if the limit is not
given, you should first find the limit).
1. (7 marks)
lim
n
→∞
n
(
p
n
4
+ 2
n
+ 2
-
n
2
) =?
ANS:
We can calculate its limit as follows:
lim
n
→∞
n
(
p
n
4
+ 2
n
+ 2
-
n
2
) = lim
n
→∞
n
(
√
n
4
+ 2
n
+ 2
-
n
2
)(
√
n
4
+ 2
n
+ 2 +
n
2
)
(
√
n
4
+ 2
n
+ 2 +
n
2
)
= lim
n
→∞
2
n
2
+ 2
n
√
n
4
+ 2
n
+ 2 +
n
2
= lim
n
→∞
2 +
2
n
q
1 +
2
n
3
+
2
n
4
+ 1
= 1
.
For all
>
0, consider the following inequality
2
n
2
+ 2
n
√
n
4
+ 2
n
+ 2 +
n
2
-
1 =
n
2
+ 2
n
-
√
n
4
+ 2
n
+ 2
√
n
4
+ 2
n
+ 2 +
n
2
<
.
In fact, one has
2
n
2
+ 2
n
√
n
4
+ 2
n
+ 2 +
n
2
-
1 =
n
2
+ 2
n
-
√
n
4
+ 2
n
+ 2
√
n
4
+ 2
n
+ 2 +
n
2
=
(
n
2
+ 2
n
-
√
n
4
+ 2
n
+ 2)(
n
2
+ 2
n
+
√
n
4
+ 2
n
+ 2)
(
√
n
4
+ 2
n
+ 2 +
n
2
)(
n
2
+ 2
n
+
√
n
4
+ 2
n
+ 2)
<
4
n
3
+ 4
n
2
-
2
n
-
2
(
√
n
4
+ 2
n
+ 2 +
n
2
)
2
<
8
n
3
4
n
4
=
2
n
.
We can then let
2
n
<
⇐⇒
n >
2
.
Now let
N
( ) = [2
/
].
Then, for all
>
0
,
∃
N
( ) = [2
/
], such that, for all
n > N
( ) (or
n
≥
N
( ) + 1), one has
2
n
2
+ 2
n
√
n
4
+ 2
n
+ 2 +
n
2
-
1
<
2
n
≤
2
N
( ) + 1
<
2
2
/
=
.
Hence, by definition, one gets lim
n
→∞
n
(
√
n
4
+ 2
n
+ 2
-
n
2
) = 1
.
2. (8 marks)
lim
n
→∞
(
n
2
+ 3
n
+ 1)
1
/n
= 1
.
ANS:
For all
>
0, consider the following inequality
(
n
2
+ 3
n
+ 1)
1
/n
-
1
<
.
1